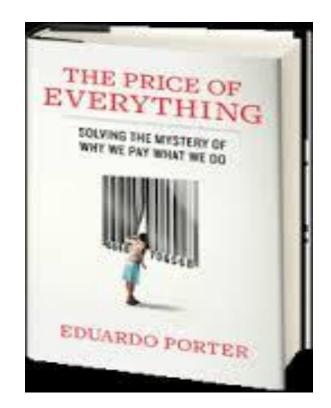
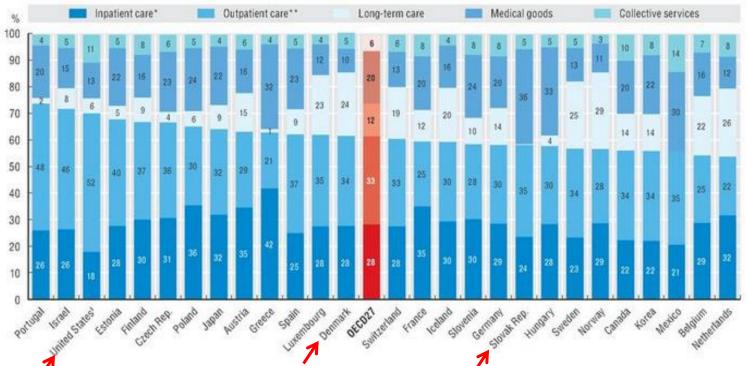
Cost-effective treatment of breast cancer Paris, 5/2/2016

Didier Verhoeven

Borstkliniek Voorkempen



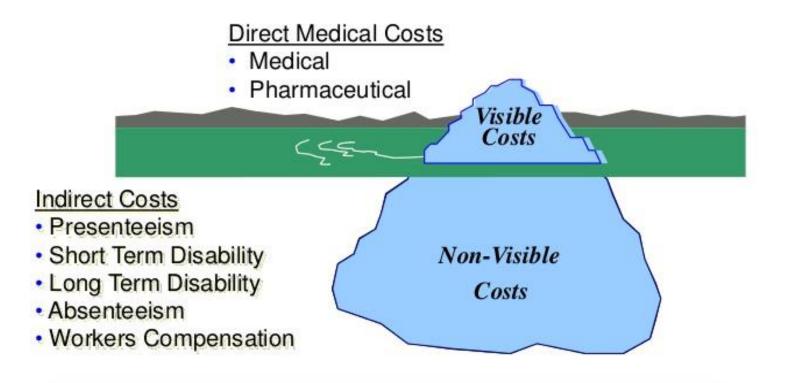
- Price: A changing vision with an ethical dimension
- Price and value are difficult to determine
- Medical need influences the willingness to pay
- A debate between society, authorities and pharma
- Much more than medication matters !



- The health system creates conditions for the economy to recover; spending on health is an investment
- The high cost of personalized medicine poses a serious challenge to the principle of equal access
- Effective action on prevention/early diagnosis will free up resources to improve access to high-quality care

Current health expenditure by function of health care (2013)

9.6. Current health expenditure by function of health care, 2013 (or nearest year)


Note: Countries are ranked by curative-rehabilitative care as a share of current expenditure on health. * Refers to curative-rehabilitative care in inpatient and day care settings. ** Includes home-care and ancillary services.

 Inpatient services provided by independent billing physicians are included in outpatient care for the United States. Source: OECD Health Statistics 2015, http://dx.doi.org/10.1787/health-data-en.

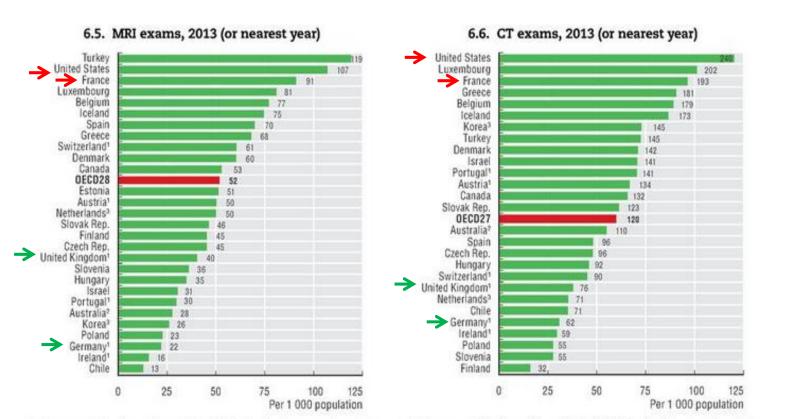
StatLink and http://dx.doi.org/10.1787/888933281277

Iceberg Phenomenon Direct vs. Indirect Costs

Indirect Costs represents 2-3 times Direct Medical Costs

Burden and cost of Breast Cancer

- 10% (The Netherlands) to 20% of total cancer cost (US-2012)
 - Direct (1/3: prevention, treatment)
 - Indirect costs (2/3: inability to work, relevant for disease as breast cancer striking before retirement)
 - Medical cost of breast and prostatic cancer are nearly half the cost of bowel, lung or leukemia (first year of diagnosis, Belgian data: 2008-2009)
- Cancer rises more in developing countries

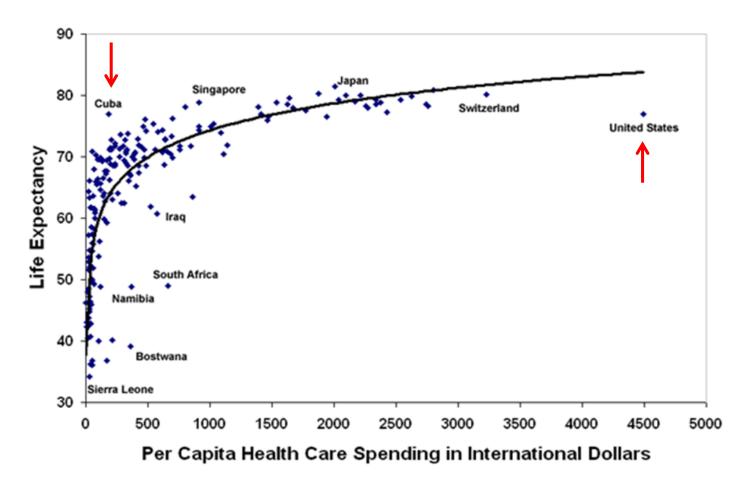


Reasons of rising cost

- High income countries
 - Ageing population
 - Increasing incidence
 - Increasing cost of cancer care
 - Increasing cost of developing drugs
 - Intensity of treatment (lines of chemo, ...)
 - Cost of "more" technologies
- Low income countries
 - Growing BC burden, because of growing and ageing population with changing lifestyle habits

More technologies : CT-NMR (OECD,2013)

- Exams outside hospital not included (in Ireland, exams in private hospital also not included).
- 2. Exams on public patients not included.
- 3. Exams privately-funded not included.
- Source: OECD Health Statistics 2015, http://dx.doi.org/10.1787/health-data-en. StatLink and http://dx.doi.org/10.1787/888933280972


Information on data for Israel: http://oe.cd/israel-disclaimer

- Exams outside hospital not included (in Ireland, exams in private hospital also not included).
- 2. Exams on public patients not included.
- 3. Exams privately-funded not included.
- Source: OECD Health Statistics 2015, http://dx.doi.org/10.1787/health-data-en. StatLink and http://dx.doi.org/10.1787/888933280972

Does higher expenditure lead to better health outcome ?

Life Expectancy vs. Spending

Total budget of breast cancer care

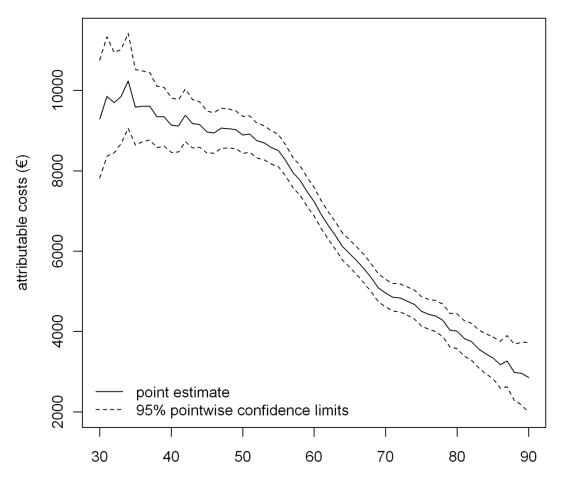
Breast cancer budget represent 0,2% of GDP (France, 2004)

- Direct cost : 1,5 miljard euro
- Prevention and research : 0,1 miljard euro
- Indirect cost, loss of productivity : 2 miljard euro
- Attributable cost decreasing with age (German data)
 - 30 -45y : 10.000 euro, 90% of all health cost
 - **7**0 y : 5.000 euro
 - 80-90 y: 50 % of all health cost
 - 90 y : 3.000 euro
- Budget depending on the stage of the tumor (Belgian data),
 - Primary, metastases
- Depending on the treatment (US data)
 - Surgery, radiation, chemotherapy

Mean cost of BC treatment (€)

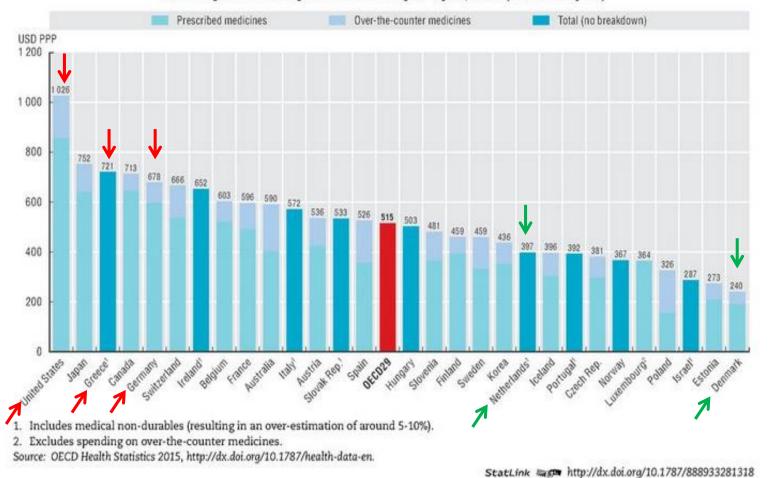
(Belgium - Cocquyt et al.2003) (in function of stage and treatment)

Treatment	Node negative	Node popospositive	RELAPS	Metastases
Surgery	489	603	332	412
Radiotherapy	935	1198	789	658
Chemotherapy	933	3300	6087	5030
Hormono	286	272	299	291
Other treatment	38	318	192	229
Other medication	83	1084	293	2013
Imaging	481	738	577	1521
Pathology	208	231	103	90
Markers	23	37	41	77
Other tests	110	250	320	369
Visits	332	605	451	725
Day Clinic	471	693	816	975
Hospitalisation	2504	4354	2534	4161
TOTAL	6893	13684	12834	16551



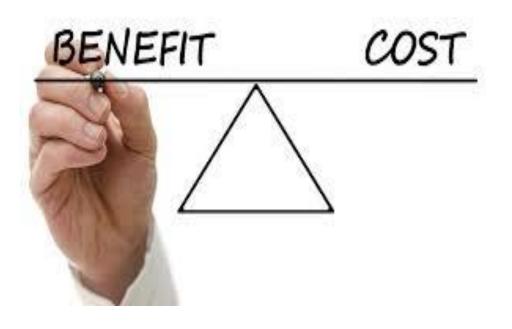
Rough estimation cost treatment BC (US) US data, Warren et al. 2008 - <u>www.health.costhelper.com</u> 2014

Modality	% patients	% cost	Estimation cost (\$)
SURGERY	90,9	24,64	
*mastectomy			15.000-50.000
*breast conserving + RT			17.000-35.000
*reconstruction (prothesis)			5.000-15.000
*reconstruction (flap)			25.000-50.000
RADIOTHERAPY	51,2	11,04	
CHEMOTHERAPY	24,2	14,8	10.000-100.000
HOSPITALISATION	23	18,34	
OTHER COST		31,17	
TOTAL (LOCAL BC)		100 %	100.000
ADVANCED- METASTATIC BC			300.000



Breast cancer attributable cost in Germany (2012)

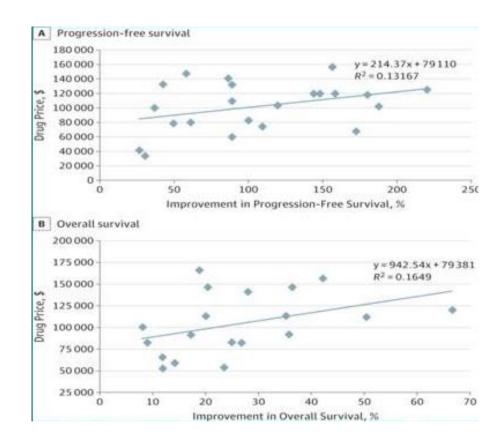
Expenditure on pharma per capita and as share of GDP, 2012



10.1. Expenditure on pharmaceuticals per capita, 2013 (or nearest year)

Borstkliniek

Budget constraints



Pricing reflects the market

 No clinical relationship between cost and the % improvement in PFS or OS

Ex-factory price of cancer drugs in European countries,New Zealand and Australia – Lancet oncology, 2015

	BE	DE	EL	FR	NL	NZ	SE	UK	
Bevacizumab	1214	1326	992	1088	1209	NA	1336	1085	
Denosumab	188	238	176	NA	214	NA	242	187	
Eribulin	NA	400	NA	320	374	NA	410	370	
Everolimus	117	126	97	126	106	NA	139	116	
Gemcitabine	NA	120	NA	102	124	209	106	167	
Lapatinib	NA	17	12	16	15	16	18	11	
Paclitaxel	NA	320	223	NA	309	NA	396	252	
Trastuzumab	623	676	458	536	579	809	695	478	
Zoledronic acid	214	282	128	215	NA	329	305	204	

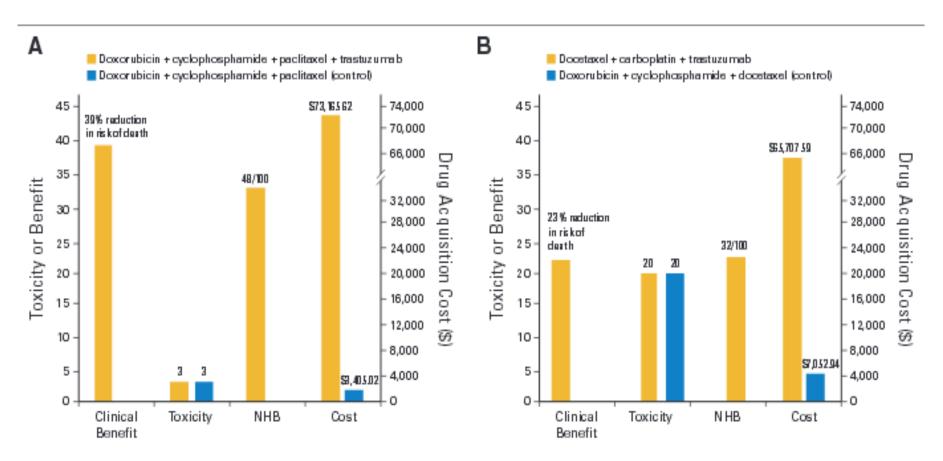
Hidden deals

 Between companies :Roche-Novartis :430 million euro

- Between government and companies
 - Discounts are confidential
 - Higher price transparancy needed
 - Public payers risk overpayment !

ASCO Statement: A conceptual framework to assess the value of cancer treatment options

JOURNAL OF CLINICAL ONCOLOGY

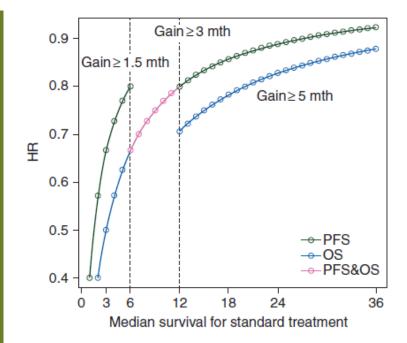

ASCO SPECIAL ARTICLE

American Society of Clinical Oncology Statement: A Conceptual Framework to Assess the Value of Cancer Treatment Options

Lowell E. Schnipper, Nancy E. Davidson, Dana S. Wollins, Courtney Tyne, Douglas W. Blayney, Diane Blum, Adam P. Dicker, Patricia A. Ganz, J. Russell Hoverman, Robert Langdon, Gary H. Lyman, Neal J. Meropol, Therese Mulvey, Lee Newcomer, Jeffrey Peppercorn, Blase Polite, Derek Raghavan, Gregory Rossi, Leonard Saltz, Deborah Schrag, Thomas J. Smith, Peter P. Yu, Clifford A. Hudis, and Richard L. Schilsky

Clinical benefit, toxicity, net health benefit (NHB) and cost of two regimens when compared with standardof-care regimen in Her-2 + BC

The ESMO Magnitude of Clinical Benefit Scale (ESMO-MCBS), Annals 2015


- Evidence of clinical benefit is derived mainly from phase III randomized trials
- Magnitude of clinical benefit
 - range from small to substantial
 - recommendations need grading
- ESMO developed a tool to stratify clinical benefit

Background

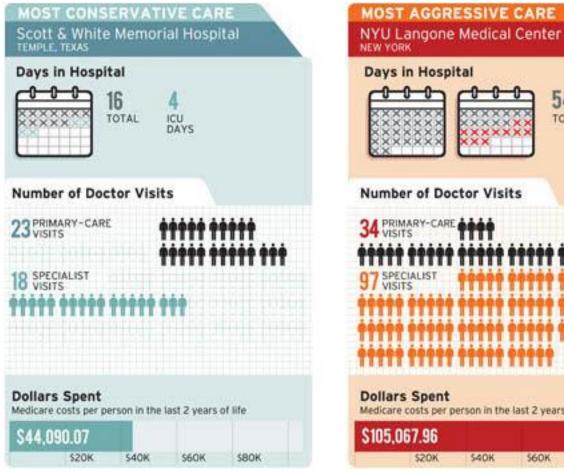
Table 2. Maximal preliminary scores

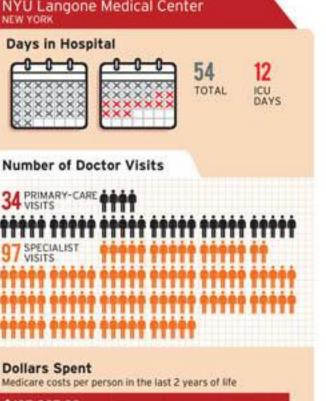
Treatments with curative intent (form 1) >5% improvement of survival at ≥3-year follow-up Improvements in DFS alone HR <0.60 (primary end point) in studies without mature survival data Treatments with non-curative intent (form 2) Primary outcome OS (form 2a) $Control \leq 12 months$ HR $\leq 0.65 AND$ gain ≥ 3 months OR Increase in 2-year survival alone ≥10% Control >12 months $HR \leq 0.70 AND$ gain ≥ 5 months ORIncrease in 3-year survival alone ≥10% Primary outcome PFS (form 2b) $Control \leq 6$ months $HR \leq 0.65 AND$ gain ≥ 1.5 months Control >6 months $HR \leq 0.65 AND$ gain ≥ 3 months

ESMO-MCBS: Breast Cancer

Table 4. Field testing ESMO-MCBS v1.0: breast cancer

Breast cancer													
Medication	Trial name	Setting	Primary	PFS control	PFS gain	PFS HR	OS control	OS gain	OS HR	QoL	Toxicity	ESM0-	Ref.
			outcome									MCBS	
Chemotherapy ± trastuz umab	HERA	(Neo)adjuvant HER-2- positive tumours	DFS	2-year DFS 77.4%	8.40%	0.54 (0.43-0.67)						A	[56]
T-DM1 versus lapatinib + capecitabine	EMILIA	Second-line metastatic after trastuzumab failure	PFS and OS	6.4 months	3.2 months	0.65 (0.55-0.77)	25 months	6.8 months	0.68 (0.55-0.85)	Delayed deterioration		5	[57, 58]
Trastuz um ab + chemotherapy ± pertuz um ab	CLEOPATRA	First-line metastatic	PFS	12.4 months	6 months	0.62 (0.52-0.84)	40.8 months	15.7 months	0.68 (0.56-0.84)	No improvement		4	[59-62]
Lapatinib ± trastuzumab	EGF104900	Third-line metastatic	PFS	2 months	1 months	0.73 (0.57-0.93)	9.5 months	4.5 months	0.74 (0.57-0.97)			4	[63, 64]
Capecitabine ± lapatinib		Second-line metastatic after trastuzumab failure	PFS	4.4 months	4 months	0.49 (0.34-0.71)			NS			3	[65]
Eribulin versus other chemotherapy	EMBRACE	Third-line metastatic after anthracycline and taxane	OS				10.6 months	2.5 months	0.81 (0.66-0.99)			2	[66]
Paclitaxel ± bevacizumab		First-line metastatic	PFS	5.9 months	5.8 months	0.60 (0.51-0.70)			NS	No improvement		2	[24]
Exemestane ± everolimus	BOLERO-2	Metastatic after failure of aromatase inhibitor (with PFS >6 months)	PFS	4.1 months	6.5 months	0.43 (0.35–0.54)			NS	No improvement		2	[67]


Some remarks



- Minimal required products !
- Negative studies ?
- Head to head comparisons ?
- Pace of conversion to generics is slowing (their price is rising)
- Hope for every patient ?

Too much treatment ? More pain, without gain ? Medicare costs per person in the last 2 years of life

\$80K

STOOK

Future perspectives

Could health economics/policy play a role in modifying clinical variability?

- Reimbursement systems are part of the story, but the culture of the hospital matters
 - clinical leadership
 - defining cut-off's
 - combining quality data with reimbursement promoting high value care
 - Ratio : diagnostic work-up and treatment in function of treated pathology and outcome
- "Difference between population data and individual clinical criteria"
- Develop resource-stratified guidelines to maximize the outcome in developing countries

Concluding: How can we save money ?

- Avoid overtreatment and overdiagnosis
- Early diagnosis lowers the cost
- Evidence based medicine and quality management
- Networking and breast centers
- Shortens treatments (hypofractionation,...)
- Ambulatory care (surgery, systemic treatment)
- Introduce precision medicine
- Transparency in price-setting
- Cutting in the administrative burden

Ideal situation

- Adopting an integrated oncological care pathway:
 - General Practitioner
 - Screening/awareness
 - Diagnostic unit
 - Multidisciplinary discussion with good leadership
 - Evidence based therapy
 - Follow-up / shared care
 - Quality control and discussion of results

Thank for your attention !

